Generating Realistic Semantic Codes for Use in Neural Network Models

نویسندگان

  • Ya-Ning Chang
  • Steve B. Furber
  • Stephen R. Welbourne
چکیده

Many psychologically interesting tasks (e.g., reading, lexical decision, semantic categorisation and synonym judgement) require the manipulation of semantic representations. To produce a good computational model of these tasks, it is important to represent semantic information in a realistic manner. This paper aimed to find a method for generating artificial semantic codes, which would be suitable for modelling semantic knowledge. The desired computational criteria for semantic representations included: (1) binary coding; (2) sparse coding; (3) fixed number of active units in a semantic vector; (4) scalable semantic vectors and (5) preservation of realistic internal semantic structure. Several existing methods for generating semantic representations were evaluated against the criteria. The correlated occurrence analogue to the lexical semantics (COALS) system (Rohde, Gonnerman & Plaut, 2006) was selected as the most suitable candidate because it satisfied most of the desired criteria. Semantic vectors generated from the COALS system were converted into binary representations and assessed on their ability to reproduce human semantic category judgements using stimuli from a previous study (Garrard, Lambon Ralph, Hodges & Patterson, 2001). Intriguingly the best performing sets of semantic vectors included 5 positive features and 15 negative features. Positive features are elements that encode the likely presence of a particular attribute whereas negative features encode its absence. These results suggest that including both positive and negative attributes generates a better category structure than the more traditional method of selecting only positive attributes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse Engineering of Network Software Binary Codes for Identification of Syntax and Semantics of Protocol Messages

Reverse engineering of network applications especially from the security point of view is of high importance and interest. Many network applications use proprietary protocols which specifications are not publicly available. Reverse engineering of such applications could provide us with vital information to understand their embedded unknown protocols. This could facilitate many tasks including d...

متن کامل

Predictive Risk Mapping of Leptospirosis for North of Iran Using Pseudo-absences Data

Leptospirosis is a common zoonosis disease with a high prevalence in the world and is recognized as an important public health drawback in both developing and developed countries owing to epidemics and increasing prevalence. Because of the high diversity of hosts that are capable of carrying the causative agent, this disease has an expansive geographical reach. Various environmental and social ...

متن کامل

A Context-aware Architecture for Mental Model Sharing through Semantic Movement in Intelligent Agents

Recent studies in multi-agent systems are paying increasingly more attention to the paradigm of designing intelligent agents with human inspired concepts. One of the main cognitive concepts driving the core of many recent approaches in multi agent systems is shared mental models. In this paper, we propose an architecture for sharing mental models based on a new concept called semantic movement....

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012